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ABSTRACT 

Two systematic wind tunnel tests were conduct to investigate coherence characteristics of fluctuating wind 
pressures along the meridian on hemispherical domes due to Reynolds number effect and roof curvature effect. 
Reynolds number was first alternated from 6.6×104 to 1.9×106 under smooth and boundary layer flows. Root-
coherences with respect to frequency and location were calculated to show how the Reynolds number effect 
changes the coherence distribution, especially when in approaching turbulent flows. Secondly, the roof curvature 
of the hemispherical dome was changed by f/D (height/span) from 0.5 to 0.1 to see the roof curvature effect. A 
modified form proposed by Hui et al (2009) was applied to present a more compact observation in a parametric 
study way rather than by Davenport’s proposed. It was finally concluded that not only the location of the 
pressure but also the distance between two taps, can significantly determine the distribution features of 
coherences. 
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Introduction 

Large span roof structures are common designs for various structures in a modern 
society, such as sport stadiums, coal/oil storage, museums, or certain symbolic, religious 
structures. Rather than seismic loads, what it may concern in this kind of structures is usually 
its curved geometry over a very large span, which may highly raise its sensitivity to wind 
loads. [Maher (1965)] first conducted measurements of mean wind pressures on 
hemispherical domes with various height-span ratios. He indicated that the drag force 
coefficient is less sensitive when Reynolds number is larger than 1.4×106. [Toy et al (1983)] 
then conducted similar experiments by alternating the approaching turbulences. Results 
showed that the increasing approaching turbulence impels the movement of separation and 
reattachment points along the dome surface. [Taylor (1991)] continued to indicate that under a 
turbulent flow, say turbulence intensity equals 15% or larger, the characteristics of wind 
pressures remain consistent when Reynolds number is larger than 1.7×105, which is an 
applicable operational value in most of tunnel tests. [Ogawa et al (1991)] investigated mean 
and R.M.S. wind pressures and spectrum characteristics of three hemispherical domes in 
laminar and turbulent flows. He gave the idea that dividing the dome roof into three zones: 
frontier zone, apex and side zone, and wake zone. He also proposed conventional models for 
approximations of power spectra and cross spectra. [Letchford and Sarkar (2000)] 
investigated the effect of surface roughness on the pressure distributions and on the overall 
drag and lift forces. [Uematsu and Tsuruishi (2008)] proposed a computer-assisted wind load 



 

 

evaluation system for the design of roof cladding of hemispherical domes based on artificial 
neural network theory. The statistics of mean, R.M.S., skewness and kurtosis of wind 
pressures were computed and stored in the database. Non-Gaussian time series of wind 
pressures could be numerically simulated for wind load estimates based on FFT technique.  

Among the aforementioned literatures, only few were given in describing the behavior 
of coherences of wind pressures. The exponential decaying coherence form proposed by 
[Davenport (1961)] was convenient and commonly applied for estimating co-coherences 
between any two fluctuating wind speeds. Nevertheless, [Ogawa et al (1991)] and [Uematsu 
et al (2008)] adopted another formula, an exponential amplitude multiplied by a cosine phase, 
to better approximate co-coherences. [Hui et al (2009)] simply modified the exponential 
decaying form by adding a coefficient to approach the non-unity coherence value at zero 
frequency for root coherences instead of co-coherences. [Lo and Kanda (2012)] indicated that 
a universal form is insufficient to represent all cross spectra, whether in the upstream region 
or downstream region. Similar qualitative discussion was also given by [Sun et al (2011)]. 

In this study, Reynolds number effect and roof curvatures are taken into considerations 
two most important factors for coherence characteristics of wind pressures on hemispherical 
domes. To well describe the characteristics of coherences, co-coherences are decomposed to 
root-coherences and phases. Hui’s simple model is applied in this study for the parametric 
identification of root-coherences. In light of the past works on dome issues, it is believed 
worthy to accumulate more detailed data on aerodynamics of hemispherical domes for proper 
design purposes of wind loads.  

Wind Tunnel Test on Surface Pressure Measurements 

Reynolds number and roof curvature effects are individually conducted in two 
simulation settings of wind tunnel tests.  

Wind Tunnel Tests for Reynolds Number Effects 
Two flows, smooth and turbulent flow are simulated in a 24.0 m (length) × 4.0 m 

(width) × 2.6 m (height) boundary layer wind tunnel for the investigation of Reynolds number 
effects. For the smooth flow simulation in Figure 1, the base plate for installing the dome 
model is elevated 55.5 cm from the section ground to minimize the boundary layer effect. 
Turbulent profile remains a small and constant value of 1%~2% in Figure 2 where 
Uδ=11.8m/sec is selected only for explanations. For the turbulent flow, the suburban terrain 
with power law index α=0.27 is also shown in Figure 3. Profiles of mean wind speeds and 
turbulence intensities are shown in Figure 4 where the turbulence intensity varies from 18% to 
25% at model heights. The boundary layer height, δ, is 140 cm and Uδ=9.9 m/sec. 

Three acrylic hemispherical models with diameters of 120 cm, 50 cm, and 20 cm are 
installed sequentially; the corresponding Reynolds number varies from 6.6×104 to 1.9×106 by 
the definition of Re=UHD/υ where UH is the mean wind speed at the model heights, D is the 
characteristic length of the model, usually the diameter of the hemisphere, and υ is the air 
density. The blockage percentages of projective areas of models are calculated to be 5.4%, 
0.9%, and 0.15% respectively, which may be considered acceptable for wind tunnel tests. 

The coordinate system of the model is indicated as Figure 5. Pressure taps are 
arranged along the meridian parallel to the direction of approaching wind. Instantaneous wind 
pressures are sampled simultaneously by a ZOC pressure scanner system at frequency of 300 
Hz. Table 1 shows the basic information of testing models and its corresponding Reynolds 
numbers. Pressures through the scanner system are then processed by numerical correction of 
signal distortion based on inverse-FFT techniques. 
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1.8 m (width) × 1.8 m (height) boundary layer wind tunnel. Figure 6 shows the normalized 
mean wind profile and the turbulence intensity profile. 

The roof curvature effects are examined by investigating the ratio of the roof height to 
the diameter of the hemispherical dome model. The diameter of models is fixed 30 cm while 
span heights are alternated to have 6 cases, which are f/D=0.1, 0.2, 0.3, 0.4, and 0.5. Vinyl 
tubes for pressure measurements are arranged along the meridian parallel to the wind 
direction. Mean wind speed at the height of the models is varying from 5.1 m/sec to 7.5 m/sec 
so that the range of Reynolds number is 1.1×105~1.6×105. According to [Cheng et al (2009)], 
when the turbulence intensity of approaching wind is high enough (>18%~20%), the 
Reynolds number effect is less significant when it is in the 105 range. Therefore in 
investigating the roof curvature effect, the Reynolds number effect can be remained 
unchanged. Table 2 shows the basic information of this part of wind tunnel tests. 
 

Figure 6: Distributions of Mean Wind 
Speed and Turbulent Intensity Profiles of 
Turbulent Flow (for Roof Curvature 
Effects) 

 
 
 
 
 

Table 2: Basic Information of Analysis Cases for 
Roof Curvature Effects 

 f/D (height/span) 

0.1 0.2 0.3 0.4 0.5 

Re 1.10 1.23 1.34 1.40 1.56 

Unit: ×105 
 

 

Coherence Form and Its Parametric Identification Model 

Coherence Form 
In general, design wind loads of a structure can be obtained through the integration of 

the following equation, 

 
1 1

m m

F j i j i pij
i j

S (f) X X A AS (f)
 

   (1) 

where f  is frequency in Hertz; i , j  represent two locations of pressures; iX  and jX  are 

structural mechanical functions at i  and j ; iA  and jA  are representative areas at i  and j ; 

( )pijS f  is the cross spectrum of fluctuating pressures between i  and j . Cross spectrum can 

be related to the following equation where co-coherence function is defined.  

 1 ( , )( , ) ( , ) / ( ) ( ) ( , ) ij s f

ij ij pi pj ijCoh s f C s f S f S f R s f e           (2) 
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s  is the net distance between i  and j ; ),( fsCij   is the co-spectrum part of ( )pijS f . ( )piS f  

and ( )pjS f  are power spectra of i  and j . ijR  and ij  are root-coherence and phase 

decomposed from co-coherence. Therefore, from Equation (2), to achieve appropriate design 
wind loads, fine estimation of each component is essential, including the coherence 
component. 

Parametric Identification Model for Root-coherence 
To properly describe the coherence features, an exponential decaying form of co-

coherence proposed by [Davenport (1961)] may need further modification, for instance, with 
coefficients to fit values at zero frequency. [Hui (2009)] therefore proposed a simple modified 
form with two coefficients for approximating root-coherences instead of co-coherences:  

 ( , ) exp( )ij

H

f s
R s f K C

U


      (3) 

In Equation (3), a decaying coefficient, C, approaches the decaying trend of the whole 
distribution and a modification coefficient, K, lowers the root-coherence value to a non-unity 
value at zero frequency. In this study, coefficients C and K varied with the Reynolds number 
and roof curvature effects are identified by least square method and plotted for qualitative 
investigations. Figure 7 shows an identification example of two coefficients. The distance 
between two pressures is represented as Δs or Δθ according to the coordinate system shown in 
Figure 5. However, coherences between two distant pressures may be meaningless so that 
only neighboring pressures are concerned in this paper. 
 

 
Figure 7: Example of Coefficient Identification of Root-coherence 

 

Results and Discussions 

Reynolds Number Effects-Smooth Flow 
Reynolds number effects on root-coherences under smooth flows are investigated 

through the identified coefficients of Equation (3). For a hemispherical dome under smooth 
flows, laminar flow attaches the upstream area of the roof and then forms a shear layer flow 
along the surface. When the kinetic balance of viscosity force and inertia force cannot be 
maintained, shear layer flow separates from the surface and then forms wakes in the 
downstream area. In this study, separation point in lower Reynolds number cases is indicated 
around 80° ~ 90°. As Reynolds number increases, the separation point moves forward to 110° 
~ 120°. Similar movement of separation point can be indicated in cases under turbulent flows. 

Figure 8 shows the identified coefficients, C and K, of root-coherences between two 
pressures in 10° along the meridian. Scattering distribution is generally indicated in Figure 8 
however root-coherences near and after separation point show much more significant 
scattering feature. For coefficient C, it seems difficult to give a good qualitative description 
when Reynolds number increases or when the root-coherence moves from upstream to 
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downstream. For coefficient K, the frontier area of the dome, where the horse vortex is 
considered to occur, has less-than-unity value at zero frequency and so does the area after the 
separation point occurs. It is also difficult to distinguish the Reynolds number effects from 
coefficient K; however, it can be indicated that as the interval of two pressures increases, 
almost the root-coherences on the whole surface have non-unity values at zero frequency. 
 

(a) C coefficient (Δθ=10°) (b) K coefficient (Δθ=10°) 

(c) C coefficient (Δθ=20°) (d) K coefficient (Δθ=20°) 

(e) C coefficient (Δθ=30°) (f) K coefficient (Δθ=30°) 
Figure 8: Identification Results of Coefficients for Cases in Smooth Flows 

 

Reynolds Number Effects-Turbulent Flow 
Root-coherences under turbulent flows are investigated from Figure 9. Compared to 

Figure 8, cases under turbulent flows have clearer features in both identified coefficients. 
Similar to smooth flows, Reynolds number effects are not apparently indicated; however the 
scattering feature is reduced than that under smooth flows. As interval increases from Figure 
9(a), 9(c) to 9(e), distribution feature changes slightly. In Figure 9(a), the area when positive 
pressures turn into negative pressures and the area near the separation point can be indicated 
local extremes of coefficients C and K; while in Figure 9(e), local extremes seem not follow 
the same observations. Coefficient K less than unity is generally seen along the meridian. To 
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further investigate the Reynolds number effects, the cases with Reynolds number larger than 
106 are slightly differ from those under 106 among Figure 9(b), 9(d), and 9(f). 
 

(a) C coefficient (Δθ=10°) (b) K coefficient (Δθ=10°) 

(c) C coefficient (Δθ=20°) (d) K coefficient (Δθ=20°) 

(e) C coefficient (Δθ=30°) (f) K coefficient (Δθ=30°) 
Figure 9: Identification Results of Coefficients for Cases in Turbulent Flows 

 

Roof Curvature Effects 
Roof curvature effects are examined through the observation of coefficients C and K 

of Equation (3). In this case, Δθ between two pressures is different from domes. For instance, 
Δθ is 9° because there can only be installed 19 pressure taps along the meridian dividing to 
totally 20 pressures for f/D=0.1 dome. For f/D=0.2 dome, Δθ is about 6.42°; for f/D=0.3~0.5 
domes, Δθ is 6°. Therefore, in Figure 10(a) and 10(b) shows the cases with one interval 
between two pressures and Figure 10(c) and 10(d) the cases with two intervals. 
 The Reynolds numbers in Figure 10 is about 1.1×105~1.6×105, whose distribution 
features are indicated similar to the cases 1.05×105 and 2.17×105. Unlike Figure 8 and Figure 
9, Figure 10 shows quite distinct differences when f/D changes, which explains the roof 
curvature effect plays a more important factor than Reynolds number on coherences. Local 
extremes can be indicated near the separation point and the very upstream area. As f/D 
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increases, the variation is more distinct. It may be recommended to find a polynomial form to 
represent such effects in terms of f/D, instead of Re. 
 

(a) C coefficient (1 interval) (b) K coefficient  (1 interval) 

(c) C coefficient  (2 interval) (d) K coefficient  (2 interval) 
Figure 10: Identification Results of Coefficients for Roof Curvature Effects 

 

Conclusions 

Root-coherence varies with the location and the difference between two taps. In 
examining results of Reynolds number effects, rather than Reynolds number, approaching 
turbulence by simulated turbulent flow plays a more significant role. However, compared to 
Reynolds number effects, distribution of root-coherence seems more related to roof curvature 
effects. As the ratio of height to span, f/D, increases, the variations of fitting coefficients 
become clearer along the meridian. The interval between two pressures can even enhance the 
feature. 

From analyzed results, a universal root-coherence formula is once again proved 
insufficient. In general, root-coherences vary significantly at lower frequency ranges, say less 
than 50Hz, which is within the sensitive range if scaled to a real structural dimension. 
Although the modified exponential model proposed by Hui can approach the non-unity value 
at zero frequency, the decaying form may be the only distribution type for different locations. 
In order to well estimate design wind loads, an advanced formula for describing cross spectra 
of fluctuating wind pressures, including the root-coherence and furthermore the phase, should 
be attempted in the next stage. 
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